
PMM U.S.S.R.,Vol.53,No.5,pp.680-683,1989 0021-8928/89 $i0.00+0.00 
Printed in Great Britain © 1990 Pergamon Press plc 

ON THE SHAPE OF A MINIMUM RESISTANCE SOLID OF ROTATION PENETRATING INTO 
PLASTICALLY COMPRESSIBLE MEDIA WITHOUT DETACHMENT* 

A.I. BUNIMOVICH and G.E. YAKUNINA 

In /i/, a variational problem was formulated concerning the shape of the 
minimum resistance of thin bodies penetrating into compressible and 
viscoplastic media which simulated soils and metals, respectively. This 
problem was formulated under the assumption that the hypothesis of planar 
cross-sections holds. The solution was analysed and the optimal solids 
of rotation penetrating into plastically compressible media were found 
when there is friction and when one of the geometrical parameters 
defining the shape of the body is specified. 

The more-complex problem of the optimal shape of a solid of rotation 
when two of the geometrical parameters defining its shape are 
simultaneously specified is solved below subject to the same assumptions. 

I. FO~g~ation Of the pPobZeM. The resistance D acting on a thin fine-pointed solid of 
rotation of length xh = L along the x-axis and with a generatrix 

y =  I(z), O < / '  ( x ) < / % =  const, f ' ( x ) < O ,  1(0)= 0 (t t) 

which penetrates at a constant velocity u into a plastically compressible medium is given by 
the functional 

x k 

D =  2a I ? o ( l ' + ~ o ) I d x ,  t , o = A l , ' + S l l ~ + G  =[~n (It 2) 
0 

where Po is the pressure of the medium on the surface of the penetrating body, ~0 is the 
coefficient of dry friction and A > 0. B > 0 and G > 0 depend on the properties of the medium 
/1, 21. 

In a number of problems, where both the linear dimensions as well as the internal profiles 
of the penetrating body are important, it is advisable to specify its shape by giving two of 
the geometrical parameters, the choice of which depends on the constructional requirements. 
It follows /i/ that, in doing this, it is best to select the maximum diameter of the body, 
d = 2B,, as one of these parameters while the length of the body, L, its volume V, or the 
lateral surface area Sj can be taken as the other. 

2. Shape o f  t he  m i n i ~ m  r e s i s t a n c e  body when i t s  l eng th  L and v~ziman d i a w t e r  d are 
spec~ied. The solution of the problem is sought in the class of functions /(~ with 
clamped ends: 

/ (0)  = O, / ( L ) ~  d/2 = R o. 

Since the volume of the body V and the surface area S are arbitrary, then, as was shown 
in /I/ by a detailed analysis of the conditions for a minimum, the equation 

@~')1= --C,+ ~4']' --~sLo + ~sG+ ~,'BH' --~4'2(A --B), ko =I' + ~ (21) 

@ (f) = 2(A -- B) I '~ + po(A -- 2B)] '~ -- ~oG 

must be satisfied along each of the arcs from which the extremal may be constructed, where 
~4 (x), ~b (x) and ~e (x) are Lagrange multipliers. The necessary conditions for a minimum have 
the form /1/ 

l , ( x ) > / 0 ,  ~s(x)>/0,  ~ . , (x)<0 (22) 

If, along the arcs of the extremum, ~4~0 and ~5~ o then ~e= 0 and, vice versa, if 
~,~= 0 then ~ ~ ~6 = 0 It has been shown that the functions ~4 (z) and L, (z) are continuous 
along the optimal contour and 
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~4(xc) = ~,(~)= 0, X4(0)= ~,(0)= 0 (23) 

where z is a point where the arcs of the extremal join. The resistance on the optimal body in 
the case under consideration is determined by the formula /i/ 

Cp= --i/,C,(Bo~k'-- L) (2.4) 

Let us investigate from which arcs an extremal can be constructed and what is their 

sequence. 
It has been shown in /I/ that, regardless of the conditons which are specified, the 

extremal always terminates with an arc of zero pressure, ~ = o. It cannot begin with this arc. 
The extremal also cannot begin with an arc ]",0,~ ~ 0 since, in this case, it would be 
expected that X~ = ~ = ~, ~ 0 while it follows that It(0) = ~ when C, ~ 0 and /(0) = o. This 
contradicts (i.I) and, consequently, the extremal must begin from the arc ]" = 0. 

Since the body is convex, (Bo/fk')>L everywhere and, since Cp>0, it follows from (2.4) 
that C, < 0. However, C, = 0 only if l~'= 0 and, when this is so, the extremal consists 
of two arcs / = kx and P0 = 0. If C~ ~ 0, then the extremal can be constructed from the three 

arcs 
i) l'=0, 2)]'~0,~=p0 ' / ' =  (AI"+B]I'+ ~'/'~0, 3)~ 2= p, =0 

TheoPem I. Under the conditions of the problem being considered, there is a uniquely 
possible sequence of the extremal arcs, I, 2 and 3. 

Initially, we will show that arc 3 can only be located at the end of the extremal. The 

condition 
I' = [ (~/1)~--  GIA] ' / '=  z'/', z > O ,  ~ =  2A/B 

must be satisfied along arc 5, where I' is the solution of the equation and 

constant. 
Let us consider the function 

(I) = @ ( I ' )  4- C,~  = F,  (z) = 2 (A - -  B) ~ / '  4- Po (A - -  2B) z + ( C , / ~ ) ( z  
GIA) *1~ -- ~oG (2.8) 

(2.5~ 

C o is an integration 

Allowing for the fact that C, < 0, z > 0 and A -- B > 0 and A -- 2B < 0 always in the case 
of the media being considered, we obtain that d2F,/dz 2> e. Since F, (0) <0 and F, (z)-- + ~ when 
z~ ~, F, (z) has a unique minimum and, consequently, there exists a unique value ! = ], for 
which F0 (f,) = 0. 

LemlDa I. Arc ~, cannot be located after arc 3. Let us assume that this is not so. 
then, according to (2.2) and (2.6), the condition 

(&,') Ic, = --CI, Fo (It,) = 0 (2.7) 

must be satisfied at the point where the arcs join, where It, is the ordinate of the point 
where arc 3 joins arc 2. 

The extremal cannot begin with arc 3 since it is mandatory that the arc ~ ~ 0 should 

come before arc ~ and since, when it 3oins with it at the point (xcl, Ic~) we have X,(zcl)= O, 
~,' (Xc,) < O, then 

[@ (Icl '+)/c, + 4- C,] < 0, Fo (/c*) < 0 (2.8) 

Since /c,<Ic,, then zc1>zc,, it follows from (2.6) that Fo(Ic,)=F1(zcl)~Oand f1(z)<O for 
all Z in the interval z < zc, ~< z, and this means that F0 (/c,)= FI (%~)< 0 which contradicts 
(2.7). 

Ler~rL 2. Arc I cannot be located after arc 3. 
Let us suppose that this is not so. Then, as follows from (2.2), the relationship 

~4' (z) = ~ (k) x 4- @ (k) C2/k -~ C/k (2.9) 

must be satsfied the arc !=kx 4- C2, where C,>0 
In order that conditions (1.4) and (1.5) should be satisfied while taking account of the 

fact that ~4 (x) and ~, (x) are continuous functions along the whole of the extremal, it is 
necessary that @(k)<0. However, then, since C1~0, ~4' (z)<0 always and this cannot be 
satisfied. 

By generalizing the results of Lemmas 1 and 2, we get that arc 3 can only be located on 
the last part of the extremal. As has already been mentioned, the extremal begins with arc 1. 
Arc ~. can then follow. In an analogous manner to the proof of Lemma 2 which has just been 
carried out, it can be shown that arc I cannot be located after arc 2. 

The theorem is thereby proved. 
As will be shown below, cases are possible when arc ~ is missing from the extremal but 

the order of arcs I and 3 is preserved when this occurs. 
The extremal always begins with arc ~. In its turn, two versions are possible for arc I : 
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a) ]=~0x, b) /= ~x. (k0>h) If the extremal begins with arc b, then I~----_ [~, and, f~om (2.2) 
when / = 0, we get 

2 4' (0) ,~, ~ C 1 ~ 0 12 |0 )  

Subject to the conditions ~4 (0)- 0, the equality (2.4) is only satisfied when C, 0 
Then, ~ (x)-----0 and ~ is determined from the equation ¢ (k)= 0 When this is so, /~' = 0 and 
there can be no arc ~ in the extremal. Now let the extremal begin with arc a. Arc 2 can 

follow after arc I only in the case when ¢ (k,)> 0 However, values of P0 exist for which 

Fig.l 

i 

!z~ L x 

Fig.2 

this condition will be violated, that is, at fairly high coefficents of friction, ~0, and, 
regardless of the specification of the values of L and d, the extremal will consists of just 
two arcs: 1 and 3. 

Let us show that, while such a value ~0" will exist, the extremal must contain arc 
when ~ < ~* regardless of the specification of L and d. We will use the notation k, = Ro/L 
and consider ~0 such that • (k,)> 0 In this case the extremal cannot begin with arc b since 

k >k~ Meanwhile, since k 0 >k~, it follows from the general form of the function • (k) (Fig.l) 
that km ~ '/3Me (2B- A)/(A- B) and ~ (k0)> 0, which assumes the possibility of the existence of 

arc 2. Let this not be so, that is, let arc 3 follow after arc a for all ~0 when ~(k,)>0 On 
joining the arcs at the point (x¢,/c), we obtain the condition 

from (2.1)-(2.3). 
The function X4'--~5 is linear on arc a (Fig.2) 

(~,~' - -  ~ )  (z )  = q ,  (ko) z + C~[ko (2 i 2 )  

Since it has been assumed that there is no arc 2, the shape of the extremal for specified 

L and d does not change as ~e is varied. However, then, since (dCp/d9e)>O. we get that (d(-- 

C1)/d~e) > 0 and 
d [( ;~, '  - -  X~) (x~)]/cl~o < 0 

From (2.11) and (2.12), since O(~e)>0 , we find ~0": 

(~*' -- A) (x& = 0 

When ~e <~0", condition (2.11) will be violated, that is, in this case we get a con- 
tradiction with the assumption that arc 8 does not exist. It can be seen that the value of 
.~0" is determined from the system of equations 

ko ((nolle') - L) e~ (~a) = (A~ ~ + G) ( ~  + ~o) I~ 

i L = d[ /c 
~c [(C°//) 'V--G/A]V' -I- ko 

Ce = /c (ko ~ "-[- G/A) ~/~', / ~  = [ ( C o f R e )  %' - -  G/A] 

If the value which has been found ~0.>0 then, when 0<~0<~ the extremal consists 
of three arcs while, when Po>P05 it consists of two arcs. If, for the specified values 
of L,and d, the value ~* < 0 then, in this case, the extremal consists of two arcs and is 
independent of any change in the coefficient of friction 90 

Using the results of the analysis of the necessary conditions which has been carried out 
above, let us write out the system of equations for finding the parameters which define the 
arcs of the extremal when ~e < ~0" in explicit form. 

Let ~i and ]~ be the ordinates of the points of the transitions from arc I onto arc 2 
and from arc 2 onto arc 3 respectively and let /c2' be the tangent of the angle between the 
tangent to the contour with the ordinate 1c~ and the x-axis. In order to determine these 
parameters and the values of C,,C 0 and /~' which make it possible to obtain the shape of the 
extremal in an explicit form when L and d = 2R 0 are specified, we have the system of 
equations 



¢ (ko) J~l = --C~, ¢ (It , ' )  I t ,  = --C1 
L = lc,/ko + 11 (It,, It2) + Is (It,, Ro) 

In(~l,~)= I xn' (])d/ (,= 1,2) 
ell 
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(2.13) 

Here, 

C "| Ro = Col[lk" + GIA] 1Iv, Ic~ = ol[lcs "~- G/A] *Iv 
L 

( - -  C~) [(Ro - -  Lt~')/I~'I = I (AI"  + BII" + G) (I' + ~o) 1 dz 
o 

x1' (/) = X+ V' -? X- '/', X+ = --q/2 12 ]/rq~/4 -; pJ/27 (2.14) 

q =  2 (A - -  B) IN,  p = ( 2 B - - A ) ~ o I N ,  N =  l/(~oG 1 -  C,), x 2' (I) = 

[(Coil) v - -  GIA]'/, 

When the coefficients of the medium A, B, G, ~0 are known and the magnitudes of R 0 and L 
are specified, the system of six Eqs. (2.13) uniquely defines the values of /c,,/c,,/~', C,,/~' 
and c O which, in their turn from (2.14), uniquely define the segments of the arcs of the 
extremal : 

i) / = k o z  when / < / c , ,  

2)  x =  ]cz/ko + I , ( ] c , , J )  w h e n  / e z ~ < / ~ < J c s ,  

3) x = l e z / k o  + I  l ( / c x , I e 2 ) + I 2 ( l e 2 , j )  w h e n  I c2 -~<I~<L  

When ~0 > P~*, the extremal consists of two arcs for which the joining coordinates Io and 
c o are found from the system of equations 

L = lc/k -~- I ,  (Jc, Bo), 1¢ = Cel[k 2 ~- GIA] ll~t 

where, in its turn, and regardless of the actual values of L and d, the coefficient k is 
either equal to k 0 or is determined from the equation ~ (k)= 0. 

Hence, we have carried out a detailed investigation of the shape of the minimum resistance 
body penetrating into plastically compressible media as a function of the coefficient of 
friction of the medium around the surface of the body. 
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